The metaverse engagement ladder: How virtual world users progress from casual explorers to high-value power users

Sezai Tunca 1 * , Yavuz Selim Balcıoğlu 2, Cihan Yilmaz 3
More Detail
1 Department of Business and Social Sciences, Alanya University, Antalya, TURKEY
2 Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Doğuş University, Istanbul, TURKEY
3 Advanced Vocational School, Doğuş University, Istanbul, TURKEY
* Corresponding Author
Online Journal of Communication and Media Technologies, Volume 16, Issue 1, Article No: e202605. https://doi.org/10.30935/ojcmt/17778
OPEN ACCESS   40 Views   19 Downloads   Published online: 22 Jan 2026
Download Full Text (PDF)

ABSTRACT

As blockchain-based metaverse platforms evolve into mature digital economies, understanding user behavior becomes essential for optimizing engagement and sustaining economic activity. This study introduces the metaverse engagement ladder, a novel behavioral framework designed to map user progression across three distinct tiers: new, established, and veteran participants. Drawing on a dataset of 78,600 blockchain transactions from five global regions, the study applies behavioral analytics to examine login frequency, session duration, and transactional patterns. The results reveal that user engagement follows a predictable lifecycle, with conversion rates reaching 70.2% during the established phase and declining to 0% at the veteran stage as users transition to management activities. Cross-regional comparisons indicate behavioral consistency across continents, with coefficients of variation below 1.6% for key metrics. The study identifies a behavioral sweet spot combining 45-90 minute sessions with 3-5 daily logins that produces 61.1% conversion rates, compared to 30.4% for shorter sessions and 0% for extended sessions. Statistical analysis using one-way analysis of variance confirms significant differences in engagement patterns across user tiers (F = 2847.3, p < 0.001), while correlation analysis reveals strong positive relationships between login frequency and session duration (r = 0.89, p < 0.001). Independent cluster validation confirms the three-tier structure with silhouette coefficient of 0.71. Grounded in theories of digital engagement, technology acceptance, and behavioral economics, this research provides empirical benchmarks for platform design, user experience optimization, and tier-specific security strategies.

CITATION

Tunca, S., Balcıoğlu, Y. S., & Yilmaz, C. (2026). The metaverse engagement ladder: How virtual world users progress from casual explorers to high-value power users. Online Journal of Communication and Media Technologies, 16(1), e202605. https://doi.org/10.30935/ojcmt/17778

REFERENCES

  • Ahn, J., & Lee, K. (2023). Experiences of peer support activities and the need for a metaverse-based program in young women with breast cancer: A qualitative study. Asia-Pacific Journal of Oncology Nursing, 10(7), Article 100253. https://doi.org/10.1016/j.apjon.2023.100253
  • Ali, M., Naeem, F., Kaddoum, G., & Hossain, E. (2023). Metaverse communications, networking, security, and applications: Research issues, state-of-the-art, and future directions. IEEE Communications Surveys & Tutorials, 26(2), 1238–1278. https://doi.org/10.1109/comst.2023.3347172
  • Almeida, G. G. F. de. (2025). Metaverse city: Conceptual views and formation factors towards the digital society. Encyclopedia, 5(2), Article 62. https://doi.org/10.3390/encyclopedia5020062
  • Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369–406. https://doi.org/10.1037/0033-295X.89.4.369
  • Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  • Douaioui, K., & Benmoussa, O. (2024). Insights into industrial efficiency: An empirical study of blockchain technology. Big Data and Cognitive Computing, 8(6), Article 62. https://doi.org/10.3390/bdcc8060062
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Rana, N. P., Baabdullah, A. M., Kar, A. K., Koohang, A., Ribeiro-Navarrete, S., Belei, N., Balakrishnan, J., Basu, S., Behl, A., Davies, G. H., Dutot, V., Dwivedi, R., Evans, L., Felix, R., Foster-Fletcher, R., Giannakis, M., … Yan, M. (2023). Exploring the darkverse: A multi-perspective analysis of the negative societal impacts of the metaverse. Information Systems Frontiers, 25, 2071–2114. https://doi.org/10.1007/s10796-023-10400-x
  • Fraga-Lamas, P., Lopes, S. I., & Fernández-Caramés, T. M. (2024). Towards a blockchain and opportunistic edge driven metaverse of everything. IT Professional, 27, 82–90. https://doi.org/10.1109/MITP.2025.3557736
  • Goldberg, M., & Schär, F. (2023). Metaverse governance: An empirical analysis of voting within decentralized autonomous organizations. Journal of Business Research, 160, Article 113764. https://doi.org/10.1016/j.jbusres.2023.113764
  • Huang, Z., Liu, Z., Chen, J., He, Q., Wu, S., Zhu, L., & Wang, M. (2022). Who is gambling? Finding cryptocurrency gamblers using multi-modal retrieval methods. International Journal of Multimedia Information Retrieval, 11, 539–551. https://doi.org/10.1007/s13735-022-00264-3
  • Huynh-The, T., Gadekallu, T. R., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q.-V., da Costa, D. B., & Liyanage, M. (2022). Blockchain for the metaverse: A review. Future Generation Computer Systems, 143, 401–419. https://doi.org/10.1016/j.future.2023.02.008
  • Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. The Public Opinion Quarterly, 37(4), 509–523. https://doi.org/10.1086/268109
  • Kourtesis, P. (2024). A comprehensive review of multimodal XR applications, risks, and ethical challenges in the metaverse. Multimodal Technologies and Interaction, 8(11), Article 98. https://doi.org/10.3390/mti8110098
  • Kozinets, R. V. (2002). The field behind the screen: Using netnography for marketing research in online communities. Journal of Marketing Research, 39(1), 61–72. https://doi.org/10.1509/jmkr.39.1.61.18935
  • Lally, P., van Jaarsveld, C. H. M., Potts, H. W. W., & Wardle, J. (2010). How are habits formed: Modelling habit formation in the real world. European Journal of Social Psychology, 40(6), 998–1009. https://doi.org/10.1002/ejsp.674
  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press. https://doi.org/10.1017/CBO9780511815355
  • Lee, L., Zhou, P., Braud, T., & Hui, P. (2022). What is the metaverse? An immersive cyberspace and open challenges. arXiv. https://doi.org/10.48550/arXiv.2206.03018
  • Lombart, C., Millan, E., Normand, J., Verhulst, A., Labbé-Pinlon, B., & Moreau, G. (2020). Effects of physical, non-immersive virtual, and immersive virtual store environments on consumers’ perceptions and purchase behavior. Computers in Human Behavior, 110, Article 106374. https://doi.org/10.1016/j.chb.2020.106374
  • Parker, G. G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform revolution: How networked markets are transforming the economy and how to make them work for you. W. W. Norton & Company.
  • Rawat, D. B., & Alami, H. E. (2023). Metaverse: Requirements, architecture, standards, status, challenges, and perspectives. IEEE Internet of Things Magazine, 6(1), 14–18. https://doi.org/10.1109/iotm.001.2200258
  • Rogers, K., Karaosmanoglu, S., Wolf, D., Steinicke, F., & Nacke, L. E. (2021). A best-fit framework and systematic review of asymmetric gameplay in multiplayer virtual reality games. Frontiers in Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.694660
  • Schumacher, P. (2022). The metaverse as opportunity for architecture and society: Design drivers, core competencies. Architectural Intelligence, 1, Article 11. https://doi.org/10.1007/s44223-022-00010-z
  • Song, C., Shin, S.-Y., & Shin, K.-S. (2023). Exploring the key characteristics and theoretical framework for research on the metaverse. Applied Sciences, 13(13), Article 7628. https://doi.org/10.3390/app13137628
  • Sundar, S. S., & Limperos, A. M. (2013). Uses and grats 2.0: New gratifications for new media. Journal of Broadcasting & Electronic Media, 57(4), 504–525. https://doi.org/10.1080/08838151.2013.845827
  • Thaler, R. H. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 199–214. https://doi.org/10.1287/mksc.4.3.199
  • Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. Yale University Press.
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
  • Wang, Y., Duan, B., Chen, X., Song, Y., & Liu, J. (2025). The application of metaverse in mental health. Frontiers in Public Health, 13. https://doi.org/10.3389/fpubh.2025.1463494
  • Yaremych, H. E., & Persky, S. (2019). Tracing physical behavior in virtual reality: A narrative review of applications to social psychology. Journal of Experimental Social Psychology, 85, Article 103845. https://doi.org/10.1016/j.jesp.2019.103845
  • Yu, W., Chua, T. J., & Zhao, J. (2023). Virtual reality in metaverse over wireless networks with user-centered deep reinforcement learning. In Proceedings of the IEEE International Conference on Communications (pp. 6639–6644). IEEE. https://doi.org/10.1109/icc45041.2023.10278715
  • Zhang, J., & Juvrud, J. (2024). Gender expression and gender identity in virtual reality: avatars, role-adoption, and social interaction in VRChat. Frontiers in Virtual Reality, 5. https://doi.org/10.3389/frvir.2024.1305758