

Online Journal of Communication and Media Technologies, 2023, 13(4), e202355
e-ISSN: 1986-3497

Copyright © 2023 by authors; licensee OJCMT by Bastas, CY. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

OSM: Leveraging model checking for observing dynamic
behaviors in aspect-oriented applications

Anas Mohammad Ramadan AlSobeh 1,2*
 0000-0002-1506-7924

1 Department of Information Systems, Faculty of Information Technology and Computer Science, Yarmouk University, Irbid,
JORDAN
2 Program of Information Technology, School of Computing, College of Engineering, Computing, Technology, and
Mathematics, Southern Illinois University, Carbondale, IL, USA
* Corresponding author: anas.alsobeh@yu.edu.jo

Citation: AlSobeh, A. M. R. (2023). OSM: Leveraging model checking for observing dynamic behaviors in aspect-oriented
applications. Online Journal of Communication and Media Technologies, 13(4), e202355. https://doi.org/10.30935/ojcmt/13771

ARTICLE INFO ABSTRACT
Received: 29 Jun 2023

Accepted: 25 Sep 2023
 In the intricate domain of software systems verification, dynamically model checking

multifaceted system characteristics remains paramount, yet challenging. This research proposes
the advanced observe-based statistical model-checking (OSM) framework, devised to craft
executable formal models directly from foundational system code. Leveraging model checking
predicates, the framework melds seamlessly with aspect-oriented programming paradigms,
yielding a potent method for the analytical verification of varied behavioral attributes. Exploiting
the transformative capacity of OSM framework, primary system code undergoes a systematic
metamorphosis into multifaceted analysis constructs. This not only simplifies the model
verification process but also orchestrates feature interactions using an innovative observing join
point abstraction mechanism. Within this framework, components encompassing parsing,
formal verification, computational analytics, and rigorous validation are intrinsically interwoven.
Marrying the principles of model checking with aspect-oriented (AO) modularization, OSM
framework stands as a paragon, proficiently scrutinizing and affirming system specifications.
This ensures the unyielding performance of electronic health record systems amidst shifting
preconditions. OSM framework offers runtime verification of both object-oriented and AO
deployments, positioning itself as an indispensable open-source resource, poised to automate
the enhancement of system performance and scalability.

Keywords: aspect-oriented programming, dynamic modeling, electronic health record, formal
method, model checking, observing-based statistical model-checking

INTRODUCTION

Aspect-oriented programming (AOP) is an innovative paradigm in software development that aims to
enhance the modularity of software systems by encapsulating cross-cutting concerns, which are
functionalities that span multiple modules, into distinct entities called aspects that can then be woven into
the core program. This can make the code more modular and easier to maintain (Abdulhameed, 2020;
AlSobeh, 2014). However, AOP can also make it difficult to predict how a program will behave, and to test and
verify its correctness. This is because the dynamic weaving of elements into the underlying code can result in
complex interactions, posing challenges in predicting system behavior and maintaining accuracy (AlSobeh et
al., 2020).

Despite AOP’s effectiveness in achieving optimal modularity and separation of concerns, verifying the
correctness of a woven program remains a nontrivial task. This is because creating a dynamic model that
considers various factors such as aspect interactions, weaving processes, and system requirements, increases
the complexity of the overall system (Alsobeh et al., 2020; Cheers & Lin, 2021). Therefore, handling large-scale
systems with numerous aspects and complex interactions could result in increased computation time and
resource requirements that affect the system’s overall performance, particularly in time-critical applications.

Research Article

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1506-7924
mailto:anas.alsobeh@yu.edu.jo
https://doi.org/10.30935/ojcmt/13771
https://orcid.org/0000-0002-1506-7924

AlSobeh

2 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

To deal with such drawbacks, improving the dependability, safety, and flexibility of software systems,
especially in critical sectors like electronic health records (EHRs), may be accomplished by creating a dynamic
model and a related framework for testing and validating aspect-oriented (AO) models in weaved applications.
AlSobeh et al. (2020) presented modular ontology model, which integrates AOP and ontology-based to
develop dynamic EHR-aware services (Alsobeh, 2019).

Thus, this necessitates the development of a dynamic model that balances optimal results and woven
program accuracy while devising a framework to verify and validate the behavior of AO models in the woven
application, ultimately achieving dynamic quality model detection (Harel, 2020; Zhang, 2023).

Our approach leverages model checking to synthesize test cases for verification purposes. Model checking
is a formal method that analyzes all possible states of a system to verify conformance to specified properties,
enabling exhaustive analysis of correctness (Qu et al., 2021). By applying model checking to generate targeted
test cases, we can effectively expose defects in the implementation under examination with respect to desired
attributes. This formal, systematic approach is well-suited for assessing behavioral conformance in
concurrent systems exhibiting finite state spaces. The capabilities of model checking facilitate verification of
diverse behavioral properties through exploration of the entire state space (Karna et al., 2018). We utilize
model checking to synthesize test cases likely to reveal defects in the system under examination, rendering a
formal methodology apt for observing dynamic behaviors of AO systems. Specifically, model checking enables
exhaustive state space analysis to automatically verify correctness properties of concurrent systems
exhibiting finite state spaces. By modeling all possible state transitions, model checking can methodically
generate targeted test scenarios aimed at exposing implementation issues relative to specifications. This
systematic approach facilitates automated verification of temporal logic properties and assertions about
ordering of events and states. Overall, model checking constitutes an effective formal technique for
monitoring and validating the intricate dynamic behaviors and interactions prevalent in AOP systems (Xu et
al., 2009).

To enhance quality metrics and streamline testing, AOP soundly modularizes cross-cutting concerns into
cohesive aspects decoupled from core business logic. Specifically, AOP enables clean separation of orthogonal
non-functional requirements into modular aspects that localize and encapsulate cross-cutting functionality.
These aspects can be independently validated in isolation from the core program flow. Decoupling through
aspects increases testability, measurably improving code quality metrics by localizing complex, tangled logic
and minimizing scattering across disparate modules. Aspects form abstract, reusable modules that help
disentangle cross-cutting concerns from primary business functions. This separation of concerns via
quantification and obliviousness principles fundamentally facilitates testing and metrics analysis, reducing
defects and technical debt. Overall, AOP’s principled decomposition mechanisms profoundly augment
modularity, promoting improved testing, measurement, and quality assurance (Gulia, 2019).

Therefore, the principled decomposition and modularization of cross-cutting concerns enabled by AOP
quantifiably improves code quality metrics by localizing complexity and reducing coupling. Specifically, the
separation of tangled logic into cohesive, independently testable aspects yields measurable reductions in
defects and technical debt accrual. By disentangling and encapsulating cross-cutting functionality into
modular units, AOP fundamentally curtails bug propagation and architectural erosion. The oblivious
quantification of scattering and tangling via modular aspects has been empirically demonstrated to curtail
defect density and improve reusability. Hence, the judicious application of AOP’s core principles of separation
of concerns, quantification, and obliviousness provides observable boosts to quality indicators through
heightened modularity and reduced coupling. The ensuing improvements in cohesion, complexity
management, and independent testability confer definitive benefits in terms of reduced bugs and defects
(AlSobeh & Shatnawi, 2023; Cerone et al., 2021).

When combined with statistical model checking approaches, software models used during runtime allow
automatic reasoning about system changes, identification of harmful or dangerous configurations, and
possible self-adaptation (Idate, 2023). Due to the limitations of in-memory processing, traditional statistical
model verification methods and tools may not be immediately relevant during execution. By fusing statistical
model checking with AOP, we close the gap between weaving cross-cutting issues into a novel application,
which is the main barrier of applying statistical model verification during program execution. Thus, it is critical

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 3 / 18

to build an observe-based statistical model-checking (OSM) framework, to evaluate program behaviors during
weaving or injection of new features (e.g., cross-cutting concerns) to get the object-oriented program’s (OOP’s)
context data (Marquez et al., 2023).

Decoupling concerns that often overlap, such as patient data management, access control, and data
security, improves an EHR system’s modularity and maintainability (Hung, 2019). Model checking verifies the
correctness of such components, hence enhancing the reliability of EHR system. To continue to serve their
intended purpose, EHR software systems in dynamic environments need regular updates. Vaccination
Management, vaccine inventory, patient scheduling, checking of adverse effects, and reporting vaccination
status to public health organizations are just a few examples of areas, where inflexible EHR systems lead to
undesired results. The robustness, security, and flexibility of EHR systems in dynamic settings ensured via the
use of model checking to test the accuracy of interactions between these components and the main
application logic. An AOP-based observer-based model checking framework is more robust than OOP while
processing corrupted input, which may occur during program weaving or the introduction of additional cross-
cutting concerns (Alsobeh et al., 2018).

AOP is used in EHR systems to modularize cross-cutting issues in a way that keeps them isolated from the
primary application functionality. Adding an element requires encapsulating the fundamental features of an
app so that you may change or add new ones. The interplay between the central functions and the injected
features are affected by the modifications. To guarantee the dependability and consistency of the resultant
EHR system, it is essential to understand these features and their influence on the weaving process. The
proposed study is focused on the development of a runtime-observing system that is suitable for AO systems
and is supported by statistical model verification techniques. This strategy employs formal approaches to
ensure the reliability and precision of the observing procedure, hence boosting the performance and safety
of AO systems in real-world circumstances. Moreover, the use of software models and statistical model
checking techniques at runtime may facilitate automated reasoning regarding system changes, detect
harmful or risky configurations, and potentially enable appropriate self-reactions. However, traditional
statistical model checking techniques and tools may not be directly applied at runtime due to constraints
related to execution time and memory occupation imposed by on-the-fly analysis, which is a certain issue may
also emerge when utilizing AOP (Aichernig et al., 2019; Alsobeh et al., 2018; Nordine, 2023).We propose an
innovative OSM framework leveraging AOP to enhance reliability and adaptability of EHR systems in dynamic
environments. OSM framework uniquely integrates systematic pipelines for parsing, formal verification,
computational analysis, and validation. This enables rigorous monitoring of program behaviors during
weaving or injection of new features (Qader, 2022).

A key innovation is the use of a propositional model to observe EHR system properties and constraints.
This model facilitates formal reasoning about safety, robustness, and adaptability amid continuously evolving
requirements. OSM framework constitutes a novel amalgamation of statistical model checking, AOP
modularity, and formal methods for verifying EHR system correctness. It provides a much-needed way to
rigorously validate reliability and seamlessly adapt these mission-critical software systems to new conditions
and regulations. The unique synthesis of modular AOP implementation, automated formal verification, and
propositional modeling of constraints represents an innovative contribution. This novel approach drives the
field forward in managing complex, evolving EHR software systems in a methodical, validated way.

LITERATURE REVIEW

Cross-cutting concerns are like a ball of yarn that has become twisted as systems have become more
complex. This metaphor can be used to understand the difficulties of addressing cross-cutting concerns in
complex systems (Abid et al., 2022; Besser, 2019). Just as it is difficult to unravel a knotted ball of yarn, it is
also challenging to apply cross-cutting concerns in an efficient and effective manner. This is because cross-
cutting concerns have effects on a variety of different parts of a system. Several approaches, including code
duplication, error handling by hand, and manual security checks, have been used in the past to address cross-
cutting problems. But nonetheless, these methods are notorious for their complexity and frequent
breakdowns (Alsobeh et al., 2019). OOP is not well-suited for implementing cross-cutting concerns. This is
because cross-cutting concerns often affect multiple objects in a system. OOP does not have a good way of

AlSobeh

4 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

dealing with this. AOP has been appeared as a promising approach to provide better separation and
integration of cross-cutting concerns than plain OOP (Nusayr et al., 2022). AOP can also help to improve the
quality, maintainability, and testability of OOP code. It is considered as a complement for OOP, not as a
replacement to it, which provides a way to implement cross-cutting concerns in a consistent and reusable way
(Alsobeh & Clyde, 2014).

Aspect-Oriented Programming & Model Checking Software Applications

AOP is a programming paradigm that encapsulates cross-cutting concerns into aspects with the
appearance of specified points in program execution. It has many benefits such as enhancement of reusing
and changing to create more value for software system developers and users. There are two sides to using
aspects: the good side is the enhancement of reusing, and the risk side it can be used in a harmful way that
can break the integrity concept of the programs (Abdulhameed et al., 2020; Ghareb & Allen, 2018; Patel et al.,
2023). During our work, we focused on investigating, where developers can use AOP in the software
development process focusing on cross-cutting concerns especially on two important phenomena: tangling
and scattering. A simple advice can change the whole behavior of the base classes whatever it is expected or
unexpected. Aspect must be used and applied in an accurate and effective way. A strict analysis must be used
to ensure the quality of AO system. It supports separation of cross-cutting concerns by building a new unit of
modularization, which called an “aspect”. Every aspect has its own cross-cutting functionality (AlSobeh & Clyde,
2014; Georg et al., 2009). This will decrease the heavy load on the core classes. This will decrease the heavy
load on the core classes. An aspect weaver creates the final system by joining and gathering the core classes
within cross-cutting aspects through a process called “weaving”. This weaving together cross-cutting concerns
into a single, cohesive system, which allows developers to decouple cross-cutting concerns from the main
business logic. This makes it easier to test and maintain the software.

New features, including logging, safety, and efficiency, were offered by Xu et al. (2007). It is possible for
issues to arise if any of the system’s components are not compatible with the overall design. They do not add
unnecessary complexity, slowness, or vulnerability to the system. They showed how model checking may be
used to ensure that the attributes of your system are not altered by any of its components. Model checking
explores every potential situation while analyzing a system’s behavior. Before committing to a system’s full
implementation, this might help you identify potential issues. They demonstrated how to adapt these models
for use with LTSAs. LTSA can guarantee that the models work with your infrastructure. The study’s findings
suggested that this approach may be used to ensure the validity and high standard of future AO designs. By
illuminating dependencies and making them more manageable, it may also help in problem-solving. Dynamic
weaving and parameterized pointcuts, two notable exceptions, are not available due to the need for manual
model conversion into LTSA processes. It does not judge superficial factors like processing speed or RAM use.

Xu et al. (2022) introduced a method for modeling and verifying AO systems using finite state machines by
encapsulating aspects and their interactions with classes into FSP processes and testing its efficacy by
identifying faulty models. Some sophisticated capabilities of AO languages, including dynamic weaving and
parameterized pointcuts, are not supported in the paper. Another shortcoming is that it does not consider
the effect of factors on operational attributes like speed or memory use. Thirdly, turning models into FSP
processes is labor-intensive and hence limited.

Alsobeh and Clyde (2016) demonstrated the potential of AOP to implement transaction-related cross-
cutting concerns in modular, cohesive and loosely coupled transaction-aware aspects, by proposing TransJ
framework, which provides join points and pointcuts for weaving advice into high-level runtime abstractions,
such as transaction contexts. Thus, cloud computing, e-commerce, online banking, social media, and big data
analytic, dynamic analysis are all some of current challenges that can be tackled using AOP since they all
involve dispersed transactions.

Model Checking of Data Systems

A well-documented issue in model checking is the state space explosion problem, which is particularly
exacerbated in the realm of big data, as it is characterized by a significant increase in the quantity, diversity,
and speed of data (Cerone, 2021). The presence of ex-tensive data volumes results in an exponential growth
in the potential states that a system can occupy. Consequently, this gives rise to a state space of considerable

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 5 / 18

magnitude that necessitates exploration, which can be impractical or unfeasible. The issue is exacerbated by
the existence of intricate data structures and types. Distributed architectures are frequently employed in big
data systems, thereby introducing an additional level of intricacy to the process of model checking. The
complex interplay among various components and data distribution mechanisms poses significant difficulties
in constructing a comprehensive and precise model of the system. Consequently, the applicability of
conventional exhaustive model checking methods, which demonstrate effectiveness in small-er and less
intricate systems, may be limited in the context of big data systems. Nevertheless, the application of model
checking to big data software poses various challenges. The phenomenon of state space explosion is a
fundamental concern in the field, as the inclusion of all conceivable data values results in state spaces of
unmanageable magnitude. The problem has been addressed through the study of abstraction and modular
verification techniques. Holistic system modeling and verification encounter additional challenges when
dealing with data-intensive distributed architectures. The optimization techniques of runtime monitoring and
selective validation have been proposed in the literature (Camilli, 2014).

Abstraction and Modular Verification

Abstraction involves reducing the level of detail in the system model to focus on relevant behaviors and
properties (Grumberg, 1994). Data abstraction can be used to group concrete data values into abstract
representations. Control abstraction simplifies complex control logic into atomic transitions. Environment
abstraction models only the external behaviors of subsystem components. Appropriate abstractions allow
faster verification by reducing the state space. However, abstraction must balance precision and analysis
speed. Coarse abstractions may miss bugs while overly detailed ones negate computational benefits.
Automated support for generating and refining abstractions is an active research area (Camilli et al., 2014).

Modular Verification

Modular verification decomposes the analysis of large inter-connected systems into modules that can be
verified independently (Grumberg, 1994): compositional verification of parallel programs (CVPPs) and formal
methods in computer-aided design. This exploits the locality of interactions to alleviate state space growth.
Individual modules are model checked, then an incremental composition process formally derives system-
level properties. Lightweight synchronization models and interface contracts between modules enables
scalable verification. Challenges include handling complex interfaces and discrepancies between local and
global specifications. Integration with development workflows is also required for adoption. Projects like
CVPPs are advancing modular techniques for real-world systems. By care-fully applying abstraction and
modularization, model checking can be scaled to verify critical behavioral properties of big data systems. The
ability to provide sound guarantees of correctness makes this a promising area for continued research.

Cheers et al. (2021) presented AO state machines are a type of state machine that can be used to model
the dynamic behavior of AO programs. The extension to UML provides a number of new features that can be
used to model the dynamic behavior of AO programs, including the ability to model the injection of new code
into existing classes, the ability to model the interaction between aspects and classes, and the ability to model
the dynamic behavior of aspects. However, they did not verify the correctness of the models that are created
using the extension to UML. Other research are limited in its scope and does not provide any formal methods
or empirical evidence to support the claim that the extension to object-oriented is effective in modeling the
dynamics of AO programs.

OBSERVE-BASED STATISTICAL MODEL-CHECKING ARCHITECTURE

To construct the proposed OSM framework using the quality detection model depicted in Figure 1. It
shows OSM architecture to validate the behavior of complex systems based on observed traces or executions.
Rather than constructing a mathematical model, this approach leverages real-world data for verification
purposes. OSM framework champions a paradigm, where ‘observing and learning’ from real-world system
operations can lead to more accurate, robust, and adaptive system validation, especially when dealing with
complex and dynamic systems. Figure 1 offers a graphical representation of OSM framework. This is not just
an abstract diagram but a roadmap to how the system operates. Here’s a step-by-step walk-through:

AlSobeh

6 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

1. Data collection: As a system operates, it constantly generates data–logs of actions taken, outputs
produced, errors encountered, and more. This stream of information is the raw material for OSM. In
the context of a software application, these might be logs generated by servers, user interactions
recorded in databases, or system performance metrics.

2. Behavioral tracing: Within the collected data, specific patterns of behavior emerge. These patterns,
or ‘traces,’ are sequences of events that recur, reflecting how different components of the system
interact under varying conditions.

3. Framework construction: OSM framework ingests these traces, organizing and classifying them. It’s
akin to piecing together a puzzle, where each trace offers insight into a different part of the system’s
overall behavior.

4. Validation & verification: Armed with this organized dataset, OSM can then compare the observed
behavior (from the traces) against expected behavior (perhaps defined by system specifications or
benchmarks). Any discrepancies here indicate areas that might need further investigation or
refinement.

In a simple scenario, imagine a smart city traffic management system. Every day, sensors at intersections
record millions of data points: car counts, traffic light changes, pedestrian crossings, and more (Tashtoush et
al., 2022). Traditional modeling might struggle to predict traffic flow during a surprise event, like a parade or
a power outage. However, OSM framework, by continuously observing and learning from the city’s actual
traffic data, can recognize unusual patterns and adapt more quickly. If a similar event has happened before,
even if it was a minor one, OSM would have recorded the trace and can predict potential outcomes, offering
traffic solutions in real-time.

OSM generates formal models automatically from the source code. This entails parsing code to determine
the essential elements, such as aspects, pointcuts, and advice. This is possible with an AO parser that
comprehends AOP’s special syntax and structures. After identifying the components, construct a CFG for each

Figure 1. OSM architecture & workflow (Source: Author)

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 7 / 18

module, considering both the base code and the aspects. CFG represents the control flow between the various
components, including any possible interactions between aspects and base code. After constructing CFGs,
translate them into a formal model suitable for model verification. This includes translating CFGs into labeled
transition systems, such as Kripke structures (Hachani et al., 2002), or any other formalism that model
checking tools can use to verify the properties of the system. After formal models have been generated, aspect
formal checking can be per-formed, which specifies the properties that the system is expected to meet, such
as safety, liveness, and fairness properties. These properties can be expressed in temporal logic or any other
supported formalism by executing the model checking aspect process, which entails analyzing the generated
formal models and determining if the specified system properties hold, such as expressing desired properties
in temporal logic, e.g., linear temporal logic (LTL) or computation tree logic (CTL) (Zhu, 2021). If the properties
do not hold, the model checker will provide an alternative on the formal models and the temporal logic
properties (Xu, 2007). These properties can be described as propositional variables and construct logical
expressions to describe the relationships between them. Analyzing the results to identify potential issues or
confirm that the system satisfies the desired properties, which means the output of the analyzer may discover
any problems in AOP code or the interactions between aspects and the core code. If any flaws are found, the
code must be modified, and the process must be repeated. This iterative cycle allows for continuous system
improvement and validation, thus reinforcing the dependability of safety-critical and real-time systems.

OSM Process: Enhancing EHR Systems Including COVID-19 Requirements

Today’s healthcare landscape demands EHR systems that not only store patient data but also provide
seamless access to numerous stakeholders, including doctors, nurses, researchers, insurance agencies, and
medical students. EHR systems stand at the nexus of patient care, ensuring safe and compliant data
management.

The intricate design of an EHR system developed through AOP involves foundational functionalities (P) for
patient data management and encompasses cross-cutting concerns. These include access control (A), data
privacy (B), health service support (C), vaccination management (D), encryption (E), and logging (L).

To illustrate the intricate process of transforming source code into a formal model, consider the
functionality for patient data management (P). The system’s source code dictates how data is stored, retrieved,
and modified. When transforming this into a formal model, each function or method in the source code is
mapped to a specific state or transition in the model. For instance, adding new patient data might translate
to a transition from a state “no data” to “data available”. Such transformations are executed for all
functionalities, ensuring that the formal model accurately represents the entire system’s behavior.

In the age of pandemics, it is paramount for EHR systems to integrate new medical findings, diagnostics,
treatments, and patient outcomes without disruptions. By allowing dynamic modification of data gathering,
reporting, and analytical procedures, the system can closely monitor the evolving trajectory of diseases like
COVID-19.

The overarching goal of a state-of-the-art EHR is ensuring safe, secure, and real-time sharing of patient
information among healthcare entities without undermining patient privacy. Especially during pandemics, this
facilitates a unified data approach, fostering collaboration and enhancing response efficiency.

Key features of a modern EHR include provisions for remote patient consultations, streamlined medication
management, and encrypted channels for communication between healthcare providers and patients.
Amplifying its health service support functions can further augment the system’s ability to cater to surging
demands for remote medical care.

The intricacies of COVID-19 vaccination distribution, tracking, and administration are efficiently addressed
by an adept EHR system. As detailed by Khalifa (2020), the system’s vaccine management feature is enhanced
to oversee vaccine inventory, patient appointments, monitor side-effects, and relay data to health agencies
(Khalifa, 2020). Moreover, throughout a crisis like the COVID-19 pandemic, adherence to access control and
privacy protocols (A, B) remains critical, requiring systems to be adaptable to emerging guidelines or legislative
mandates. Ensuring enhanced access control (A) and data privacy (B) mechanisms, EHR system becomes a
pivotal tool in managing patient information during the pandemic, aiding healthcare professionals in
delivering top-notch care and effectively responding to multifaceted challenges.

AlSobeh

8 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

The various stages of integrating elements like logging, encryption, access control, and others into the core
functionality of EHR system through the lens of big data systems can present some complexities. Figure 2 lies
in its clear demonstration of the systematic integration process, highlighting the comprehensive steps
involved in OSM’s processes and underscoring how they enhance the robustness and quality of EHR system.
It illustrates the applying OSM process to EHR system, which helps ensure that the desired properties are
maintained, enhancing the safety, reliability, and overall quality of the system. Suppose we have an EHR
system developed using AOP that includes aspects for logging patient data, encryption of sensitive
information, and access control. In EHR system with the following modules:

1. Patient data management (P)–the core functionality.

2. Access control (A), data privacy (B), health service support (C), vaccine management (D), encryption (E),
and logging (L)–the cross-cutting concerns.

Each of these modules are described as propositional variables. OSM weaving process uses logical
expressions that combine these variables, where the complete EHR system (S) can be represented as the
conjunction of the core functionality and the cross-cutting concern expression (proposition 1):

𝑆𝑆 = 𝑃𝑃 ∧ 𝐴𝐴 ∧ 𝐵𝐵 ∧ 𝐶𝐶 ∧ 𝐿𝐿 ∧ 𝐸𝐸.

Proposition 1 defines predicate on the relationships between these components using propositional logic.
For instance, P(x) represents patient data management for patient x, while A(x) signifies access control for
patient x, and so on. The complete EHR system for a patient x, incorporating all the cross-cutting concerns as
predicates, which can express interactions and constraints between various components of EHR system. Then
we can verify several universal interactions, i.e., proposition 2. The complete EHR system for a patient x,
incorporating all the cross-cutting concerns as predicates, as shown in proposition 1, which can express
interactions and constraints between various components of EHR system. Then we can verify several universal
interactions, i.e., proposition 2:

∀x (C(x) → A(x) ∧ B(x)).

If health service support (C) is present for a patient x, then access control (A) and data privacy (B) must
also be present for that patient x (proposition 3):

∀x(A(x) → (L(x) ∧ E(x))).

If access control (A) is present for patient x, then logging (L) and encryption (E) must also be present for
that patient x. These expressions allow us to describe the system’s properties and constraints as model
checking. For example, if health service support (C) requires specific access control (A) and data privacy (B)
functionalities, we can stand for this constraint, as follows:

𝐶𝐶 → (𝐴𝐴 ∧ 𝐵𝐵).

This expression states that if health service support (C) is present in the system, then access control (A)
and data privacy (B) must also be pre-sent. Another example, if access control (A) requires specific logging (L)
and encryption (E) functionalities, we can show this predicate, as follows:

𝐴𝐴 → (𝐿𝐿 ∧ 𝐸𝐸).

Figure 2. Interaction of an EHR system within OSM processes (Source: Author)

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 9 / 18

This OSM’s logic states that if access control (A) is present in the system, then logging (L) and encryption
(E) must also be present. Similarly, we can describe other cross-cutting concerns and interactions between
EHR components in OSM using propositional logic and formal methods. The intersection between these
modules using basic mathematical operations for injection, where translate, if C, then A and B must also be
present for the patient, C(x)=A(x)+B(x), then L and E must also be present for that patient, A(x)=L(x)+E(x). OSM’s
analysis processes logical expressions to verify properties of these interactions, such as whether certain
components can coexist or whether specific cross-cutting concerns are adequately addressed.

Figure 3 shows the snippet code of EHR cross-cutting concerns, including the core functionality (P) and
the aspects for L, E, and A, is parsed. The snippets offer a clear and practical illustration of how these critical
aspects are implemented in EHR core code using OSM’s components, where it contributes to the cross-cutting
functionalities of EHR system, such as the Logging Aspect helps track system activities, the Encryption Aspect
ensures the security of sensitive patient data, and the access control aspect controls who has the
authorization to access specific resources. Core functionality, represented by PatientData.getMedicalHistory
(P), demonstrates how patient medical history is retrieved in the system. OSM demonstrates the practical
application and interplay of these aspects within the core code of an EHR system, helping readers understand
the real-world implementation of such crosscutting concerns. The parser identifies the aspects, pointcuts, and
advice in the core code, creating a representation of AOP structure of EHR system, such that implements three
aspects: L, E, and A, as shown in Figure 3.

Figure 3. Snippet code of key aspects & core functionality in EHR system (Source: Author)

AlSobeh

10 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

These aspects are woven into EHR system, enhancing the core functionality related to P. The parser reads
the source code, extracting the aspects, pointcuts, and advice to create a representation of AOP structure of
EHR system. This representation is then used to construct CFGs and, subsequently, formal models for model
checking.

OSM framework automates the generation of formal models directly from system source code, enabling
rigorous verification. This involves systematically parsing the codebase to extract key structural elements,
including aspects, join points, pointcuts, and advice in AOP implementations. For example, an AspectJ parser
would analyze the abstract syntax tree (AST) to identify aspect declarations, before/after advice, etc.

With AOP structure identified, the next stage constructs CFGs to represent execution paths within and
between components. Nodes in CFG denote statements or expressions, while edges capture flow of control.
CFG visualizes possible flows considering aspect interactions with the base code.

For example, a CFG for an EHR getMedicalHistory call could show flows from checking user access
permissions, to logging entry/exit, to fetching encrypted records. Loops, branches, and entry/exit points are
modeled. CFG for getMedicalHistory would translate to a Kripke model representing those components and
their interactions, like state 1: start, transition 12: isUserAuthorized (A), state 2: log start (L), transition 23:
encryptData (E), state 3: fetch records (P), transition 34: log end (L), and state 4: return records.

This formal representation enables exhaustive verification of EHR system correctness and security
properties through model checking.

CFGs should capture the control flow between the aspects and the base code, reflecting the proper
execution order and any interactions. In considering the PatientData class (core functionality) and the three
aspects (L, E, and A) from the earlier response, as shown in Figure 4. It captures the interactions and
dependencies between them. In this CFG, the nodes represent the various operations and method calls, while
the edges represent the flow of control between these operations. The graph begins with the
getMedicalHistory method call (core functionality P) and proceeds to the isUserAuthorized check (access
control aspect A). If the user is unauthorized, an UnauthorizedAccessException is thrown, and the control flow
ends. If the user is authorized, the control flow proceeds to the log start operation (logging aspect L), followed
by the encrypt result operation (encryption aspect E). Finally, the control flow moves to the log end operation
(logging aspect L) and then returns the encrypted result. The graph can then be translated into a formal model
suitable for model checking, such as labeled transition systems or Kripke structures.

The formal models are checked against the desired proper-ties and constraints defined using
propositional logic (e.g., A→(L∧E)). It defines proper-ties EHR system should satisfy, such as confidentiality
(e.g., sensitive data must al-ways be encrypted), integrity (e.g., datashould not be modified without proper
authorization), and availability (e.g., authorized users should always have access to the system). Run the
model checking process on the generated formal models, verifying that the specified properties hold. For
example, the model checker may verify that the encryption aspect is always applied before sensitive data is
transmitted or stored. If the model checker con-firms that the properties hold, EHR system is considered safe
and reliable. However, if any issues are detected (e.g., a counterexample showing unauthorized access to
sensitive data), EHR system’s AO code should be revised to address the problem. The model checking process
is then repeated to ensure that the desired properties hold after the modifications. Therefore, the results of

Figure 4. CFGs, interplay of core functionality & aspects (L, E, & A) in patient data management (Source:
Author)

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 11 / 18

the analyzer verify if EHR system adheres to the specified constraints and requirements, ensuring the correct
implementation and interaction of the aspects within EHR system.

This shows AO captures the complexity and relationships between the modules in the actual EHR system
using directed graph representation. In our EHR System: we directed edges between the nodes to represent
dependencies and relationships: C→A: If health service support (C) is present for a patient x, then access
control (A) must also be present for that patient x. C→B: If health service support (C) is present for a patient
x, then B must also be present for that patient x. A→L: If A is pre-sent for patient x, then L must also be present
for that patient x. A→E: If A is present for patient x, then E must also be present for that patient x. However,
it’s possible that this model is insufficient on its own for ensuring the system’s integrity and security. Formal
techniques, model checking, or testing may be used to conduct a more thorough analysis of the system. These
methods may boost confidence that system will provide the expected functionality, safety, and dependability.

OSM’S COMPONENTS & IMPLEMENTATION1

Figure 5 shows the integrated pipeline of parsing, model checking, formal computation, analysis, and
validation, which enables the verification of system’s properties, ensuring that components can coexist and
that specific cross-cutting concerns are addressed appropriately. By analyzing logical expressions and
executing the model checking process, EHR system’s adherence to specified constraints and requirements is
confirmed, guaranteeing the correct implementation and interaction of the aspects within the system.

OSMParser uses the visitor pattern to traverse and analyze AST representing AOP code. The Visitor pattern
is a behavioral design pattern that allows you to define new operations on an object structure without
changing the structure itself (Hachani et al., 2002; Pereira-Vásquez et al., 2020). It is particularly useful when
dealing with a complex hierarchy of objects or when you need to perform multiple operations on the same
object structure. AspectInfo class holds some basic information about an aspect, where the Aspectprocessor
has a processAspects method that is retrieving the collected AspectInfo instances by creating an instance of
AOPVisitor, parsing the AspectJ source code. OSMParser class is responsible for parsing the source code and
generating an AST using ASTParser. AOPVisitor class is a visitor that extended by ASTVisitor class, which is the
abstract visitor class provided by the Java AST framework. It can visit different nodes in AST and identify the
essential AOP elements (aspects, pointcuts, and advice), which defines methods for visiting these nodes, such
as visit (AspectDeclaration), visit (PointcutDeclaration), visit (BeforeAdvice), and visit (AfterAdvice). When a
specific node is encountered during the traversal, the corresponding method in AOPVisitor class is called,
allowing the visitor to perform the necessary analysis on that node. The AbstractAOPParserAspect is an
abstract aspect that contains a pointcut called parseAOPSource () and two advice methods: before() and
after(). It handles advising that is parsing and processing of AOP source code.

1 https://github.com/siualsobeh/osm

Figure 5. OSM framework components (Source: Author)

https://github.com/siualsobeh/osm

AlSobeh

12 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

By using this aspect, you can modify the behavior of OSMParser and AOPVisitor without changing their
actual implementation, i.e., obliviously, which reflects the modularity and extensibility benefits of AOP
approach. Observer (visitor) pattern is used to traverse and analyze AST generated from AOP source code,
while AOPVisitor class acts as the concrete visitor to identify essential AOP elements. The
AbstractAOPParserAspect demonstrates the modularity of AOP approach by advising the parsing and
processing of AOP source code. The ControlFlowGraphAspect is an aspect that handles weaving CFG
generation into EHR target system. It intercepts the execution of the program at specific join points, such as
method calls, branches, and loops, and updates CFG accordingly. This helps to modularize CFG generation
process and separate EHR’s flows from the core functionality of the system. The ControlFlowGraphManager
class handles CFG construction for different modules and aspects in a program. It interacts with the parser to
extract relevant information from the source code and AOP structures, and then builds the corresponding
CFGs. The manager provides methods for accessing and manipulating the graphs, such as adding and
removing nodes and edges, and querying the graphs for specific information. Thus, OSM’s CFG classes enable
flexible data-driven modeling of program control flow. The graph structure soundly captures statement
relationships and execution trajectories within and across aspects. Systematic encapsulation and abstraction
mechanisms provide versatility along with strong typing guarantees.

FormalProof class is responsible for conducting the formal verification process using CFG and the specified
properties. It takes the generated CFG and translates it into a suitable formal model, such as a Kripke
structure, which can be analyzed by model checking tools . The class also handles the expression of properties
in temporal logic or any other supported formalism, such as LTL or CTL. CheckProperty class represents a
specific property that the system is expected to be safety, liveness, or fairness properties, and are expressed
in a formal language, such as temporal logic. This class also stores data about a property, such as its formal
expression, type, and methods for comparing and evaluating the properties against the formal model derived
from CFG, which can be checked to verify if the model satisfies the properties, and to identify any potential
problems with the model. FormalProofAspect is an aspect’s class that enables formal verification to be woven
into the target program, which intercepts the execution of the construction of CFG or the translation of CFG
into a formal model. It then invokes FormalProof class to perform the verification, checking if the specified
properties hold for the system. Therefore, FormalProofAspect helps to modularize the formal verification
process and separate it from the core functionality of the program. Thus, the analyzer ensures the correct
implementation and interactions of the aspects within the system, and validates the logical relationships and
constraints defined by the formal methods.

Algorithm 1 in Figure 6 provides a method tailored for the construction and optimization of AOP-based
EHR systems. Initiating the process, the raw AOP implementation of EHR system is parsed to generate an AST,
illuminating the hierarchical structure and identifying key AOP constructs such as aspects, join points,
pointcuts, and advice. This AST subsequently undergoes a transformation to produce CFGs, offering a
granular representation of potential execution trajectories within the system, with nodes delineating AOP
interactions and edges charting the execution sequence.

Figure 6. Algorithm 1: Procedure of OSM-DB framework for validating & ensuring safety & reliability of big
data EHR software systems (Source: Author)

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 13 / 18

Following this, a Kripke transition system is derived from CFG, forming the foundation for rigorous model
checking. Every node and edge from CFG translates seamlessly into states and transitions of the Kripke model,
with added predicates to articulate the conditions governing each state. This methodical construction does
not just enhance clarity but ensures conformance to formal specifications. Delving into the operational facet,
the algorithm’s efficiency is evident in its polynomial runtime complexity, predominantly steered by the
intricacies of state space traversal in model checking. Complementing the core procedures, the algorithm
boasts tight integration capabilities with prevailing AOP toolchains, a boon for developers, fostering modular
design while preserving the flexibility to weave in new aspects or modify existing ones.

EVALUATION & DISCUSSION

To evaluate our model, we used online datasets that contain EHR data from different sources and settings.
One of the datasets we used was medical information mart for intensive care (MIMIC-IV), which was especially
suitable for our model (Johnson, 2023). MIMIC-IV is a freely available dataset developed by the MIT lab for
computational physiology. It includes de-identified health data of about 200,000 patients who stayed in critical
care units between 2008 and 2019 (Johnson et al., 2023; Kallfelz et al., 2021). To access this dataset, we
completed a CITI course in human research protections as a requirement to protect the privacy of the
individuals whose data is in the database. We used it as input to simulate and test our model with healthcare
systems, such as the patients seeking medical care via health service. We utilized this MIMIC-IV dataset to
create a realistic and representative MIMIC-EHR system’s extensions for testing the functionality of OSM
model. They have attributes such as name, age, gender, address, phone number, email, medical history, etc.
They have methods such as register, login, logout, request appointment, cancel appointment, join
consultation, rate consultation, etc. This helped us evaluate the model’s robustness and observe its behavior
under realistic conditions and identify any potential issues. To facilitate a thorough and efficient healthcare
response to the COVID-19 pandemic, we identified key cross-cutting problems that would support the
evolving role of EHR systems. Although these are generic features included in many EHR systems, they have
been tailored to meet the requirements of the COVID-19 EHR. When implemented, these functionalities are
usually in the form of a module. These modules all fundamentally perform the COVID-19 functions of
managing MIMIC-EHR system. However, these modules are commonly modified for COVID-19 EHR’s domain-
specific needs. For instance: Patient-centric care plans are automatically updated to reflect new information
on how to treat or prevent COVID-19, thanks to this overarching concern. Data-driven, which is intersecting
concern weaves data for real-time data interchange on COVID-19 vaccine development and dissemination by
integrating with OSM-EHR components. In order to facilitate the delivery of healthcare remotely, telehealth is
a cross-cutting problem that is integrated with OSM-EHR via the provision of seamless connectivity with
telehealth platforms. Vaccine Management is a cross-cutting issue that keeps track of patients’ COVID-19
immunization history, down to the vaccine kind and administration dates, and also includes a reminder and
appointment setting function. These cross-cutting concerns can be integrated obliviously without changing
the core EHR health system, as shown in Figure 7.

Figure 7 demonstrates the integration of vaccine management, a critical cross-cutting concern that
meticulously tracks patient COVID-19 vaccination histories, including details such as vaccine type and
administration dates, in addition to a reminder and appointment setting functionality. Such cross-cutting
concerns are incorporated obliviously into the core EHR health system using OSM’s properties. Represented
as individual modules in the MIMIC-EHR system, these cross-cutting issues demonstrate high extensibility and
adaptability, vital for their integration into various health-focused application setups. Using a predefined EHR
methodology to extract a set of EHR data, these modules are integrated into OSM framework, as showcased
in this case study. These interdisciplinary issues are represented by individual modules inside a MIMIC-EHR
system and must be highly extensible and adaptable to fit into any health-focused application setup. To
extract a set of EHR data according to a pre-defined EHR methodology, we integrated these modules into OSM
framework and utilized them in this case study, as shown in Figure 7. To evaluate these modules, we extracted
relevant patient data from the MIMIC-IV dataset and simulated various tasks within OSM health service health
system (EHR_MIMIC_Sys). This enabled us to assess how the system performed under realistic conditions and
whether it met all the defined properties and constraints. The data we extracted included:

AlSobeh

14 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

1. Patient demographics: Information such as age, gender, ethnicity, etc.

2. Clinical data: Lab measurements, medications, vital signs, diagnoses, etc.

3. ICU data: Caregiver notes, imaging reports, fluid balance, severity scores, etc.

4. Hospital data: In-hospital mortality data, hospital, and ICU length of stay, etc.

In our model, we generated AOP code for healthcare systems using the MIMIC-IV dataset as a basis. We
then fed this AOP code into the model for parsing and analysis, as shown in Figure 7. We extended EHR
system with OSM aspects that ensure weaving the system and its data obliviously. It uses pointcuts to
intercept the patient records, such as applies encryption and decryption algorithms. It also uses pointcuts to
intercept the create, retrieve and store methods of consultations. This required introducing the aspects to
EHR system’s classes, which created an advises relationship with the HealthResponse, VaccineManagement,
Telehealth, DataPrivacyAndSecurity, DataDrivenCapablities, and PlanCentericPatientCare aspects. These
aspects advise OSM framework’s classes within the execution of the program. They identify a pointcut for the
call and extend of the modelChecking, checkPropertyMethod, ParsingOperation, methodExecution methods
and declare advice acting around that pointcut. They also ensure the personal and medical information of
patients and providers is supplied with appropriate behavior, as shown in Figure 7. These aspects firstly
extend a pointcut targeting the call of OSMParser, AbstractAOPParserAspect, andControlFlowGraphAspect.
Secondly, the aspects implement advice that wrap the declared pointcuts to intercept and sort the returned
flow and data. To document this application, its behavior and structure are modeled for requirements
traceability using AspectInfo, while also applying the proposed FormalModelAspect. These aspects have also
introduced new EHR System settings that stores a list of FormalProof class that need to be validated. In a
complex EHR application, this could be represented as EHR configuration components.

Join points in this system are identified and defined based on OSM-based AST nodes and the control flow
of the program dynamically, which is represented specific moments during the execution of EHR operations,
where certain EHR actions can be performed. In this context, OSMParser and AOPVisitor join points capture
the control flow of EHR operations, thereby providing necessary interaction points. In automation, Aspects
within FormalProof are defined to facilitate the construction of CFG, and the subsequent translation of this
graph into a formal model. The use of extended join points enables us to invoke the formal verification
process at the proper stages, such as the ParseAOPSource’s pointcuts intercept the ‘register’ and ‘edit’

Figure 7. Integration of cross-cutting concerns into EHR system using OSM’s aspects (Source: Author)

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 15 / 18

methods associated with patients and providers in EHRs. These pointcuts implement data obliviousness and
anonymization techniques. The pointcuts extend from the join point, where the processAspects() method is
initiated. Furthermore, they intercept ‘record’ and ‘retrieve’ methods, providing advice and enabling the real-
time integration of additional behavior and functionality without modifying the inherent structure of the
program timely.

OSM’s analyzer confirms that EHR system adheres to the constraints and requirements. It does this by
systematically examining the outputs generated by OSM-EHR system in response to given inputs. When the
system generates an output, the analyzer cross-checks this against the expectations defined by the formal
model as mentioned. For instance, if EHR system states that a patient x is receiving health service support,
the analyzer checks to confirm that access control and data privacy measures are also implemented for that
patient. When OSM-EHR system generates output based on these inputs, such as predictions or
recommendations, we cross-check it against our expectations derived from OSM’s model checking. To clarify
that, the logic we have derived stipulates that if a patient is receiving health service support, it is mandatory
that robust data privacy and security measures are also implemented. In this context, the logical relationship,
i.e., proposition 4, signifies that the presence of health service support for a patient x necessitates the
implementation of both access control and data privacy measures for the same patient:

∃𝑥𝑥(𝐶𝐶(𝑥𝑥) ⇔ 𝐴𝐴(𝑥𝑥) ∧ 𝐵𝐵(𝑥𝑥)).

This relationship is confirmed using a formal mathematical model. Let us look at proposition 5:

𝐴𝐴(𝑥𝑥) + 𝐵𝐵(𝑥𝑥) ⇒ 𝐶𝐶(𝑥𝑥).

Obviously, this means that if EHR(x) has access to MIMIC-EHR health service services, then patient x also
has data privacy and security (A and B), as shown by the expression. This makes sense to us, as protecting the
privacy and security of patient information during health service requires both access control and data
privacy. The implication of this proposition is that if patient x has A or B, then EHR(x) must also have health
service support. However, there may be exceptions to this rule, such as when access restriction or data privacy
is needed for reasons other than health service assistance. A patient may have permission to see his/her EHR
or data privacy concerns may prevent him/her from using the hospital system. With applying OSM’s model
checking, we implement the connection between C, A, and B using different operator than addition, where,
𝐶𝐶(𝑥𝑥) ⇔ 𝐴𝐴(𝑥𝑥) ∧ 𝐵𝐵(𝑥𝑥).

To verify this logical relationship and ensure the system’s compliance with these dependencies, this means
that OSM’s formal mode can verify the AO privacy and security module, where if EHR(x) has health service
support, then patient x must have A and B. Therefore, this guarantee that the absence of health service
support does not imply the absence of access restrictions or data privacy. In this context, is an automated
process that scrutinizes the system to confirm whether it correctly adheres to these defined rules. Through
this process, any discrepancies or faults inside EHR system that go against the predetermined attributes, the
analyzer would flag these issues. When such issues are found, they can be corrected by revising AOP code,
and the model checking process can be repeated to verify the fix. To ensure that the changes made do not
bring any new problems, and to verify that the system now correctly implements and interacts with its aspects,
OSM’s model verification is repeated. The quality of service and general dependability of the system are
improved by OSM’s use of a formal approach and automated verification tools, which enable early detection
and resolution of possible problems.

CONCLUSIONS

AOP-based statistical model checking generation method, using a propositional model, proves to be an
invaluable tool in ensuring the safety, reliability, and adaptability of real-time embedded and safety-critical
systems, especially in the continuously evolving context of EHR software systems. The propositional model
aids in understanding and predicting the behavior of these systems under varying conditions, thereby
providing enhanced modularity, reusability, and maintaining software integrity. It facilitates the validation of
the implementation phase by effectively analyzing and processing the diverse scenarios arising from a
constantly changing environment. The construction of OSM framework involves parsing the source code,
creating CFGs, and translating these into formal propositional models that are then checked against specific

AlSobeh

16 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

properties to ensure that the system meets all defined requirements. This methodological approach
heightens the safety, reliability, and overall quality of these systems. The application of this methodology in
the context of the COVID-19 pandemic demonstrates its effectiveness in EHR system adaptations. Addressing
crucial cross-cutting concerns like access control, data privacy, health service support, and vaccine
management, OSM process successfully validates the system’s desired properties, leading to improved
reliability, adaptability, and quality of EHR system. Using formal method with AOP identified potential issues
and verifying system compliance with required properties at real time. Dynamically, in cases, where
discrepancies are detected, the code can be modified, and the process is repeated until OSM’s system meets
the desired standards. Consequently, AOP-based statistical model checking generation method ensures the
correct implementation and harmonious interaction of aspects, proving its value for developers and
engineers working on real-time embedded and safety-critical systems in a continuously changing
environment. This enables the identification of potential issues and confirmation of system compliance with
desired properties. In the case of detected flaws, the code can be modified, and the process repeated to
ensure the system’s correct implementation and interaction of aspects.

Future Works & Limitations

Future research efforts will aim to fully exploit the capabilities of AOP-based statistical model checking
generation method in the context of big data. This will involve addressing issues related to scalability,
applicability across various domains, data characteristics, privacy and security concerns, as well as the
integration of predictive analytics. Further investigation is required to examine the scalability of this approach,
as it is a crucial aspect that requires thorough examination. Considering the rapid expansion of big data, it is
imperative to investigate the capacity of the proposed model to effectively accommodate and process
significantly larger datasets. To achieve scalability, it is imperative to explore the potential of distributed and
parallel computing techniques to enhance the computational efficiency of statistical model checking within a
big data setting. It is imperative to investigate the resilience and efficacy of the model across various big data
domains, extending beyond the realm of healthcare. This would enable us to comprehend the model’s
suitability and adaptability in various contexts, thereby augmenting its potential for wider influence.
Furthermore, it is possible to further explore distinct attributes of big data, namely veracity, velocity, and
variety. Subsequent research endeavors may prioritize the enhancement of real-time data processing
capabilities, the assurance of data quality and accuracy, and the effective management of diverse data types,
all while upholding the system’s safety and reliability. In the future, it is imperative to conduct a com-
prehensive examination of the security and privacy considerations pertaining to the system, as further
investigation is warranted. Considering the inherent sensitivity of EHRs and the increased significance of
safeguarding data privacy in the current era of extensive data collection, conducting research on the
deployment of sophisticated data encryption methods, secure access mechanisms, and anonymization
techniques would yield valuable insights. Furthermore, considering the artificial intelligence standpoint and
IoT, future investigations may prioritize the exploration of methods to augment our model by incorporating
predictive analytics functionalities (Alsobeh, 2018). This approach has the potential to enhance the
identification of prospective challenges and system failures, consequently enhancing the efficacy of
preventive measures and augmenting the overall dependability and performance of the system. Although our
study offers interesting insights into the application and effectiveness of OSM strategy, it is important to
acknowledge its limits. The research was primarily limited by its narrow scope, which centered on systems of
modest size. As a result, it may have failed to consider the unique issues associated with larger-scale and
more complex designs. The potential computational burden associated with formal modeling may not
accurately reflect the demands of real-time situations, indicating the need for care when generalizing our
results to such settings.

Funding: The author received no financial support for the research and/or authorship of this article.
Ethics declaration: The author declared that, as this study proposes a conceptual model and utilizes publicly available
datasets, formal ethical approval was not required. To access the dataset, a CITI course was completed in human
research protections as a requirement to protect the privacy of the individuals whose data is in the database.
Declaration of interest: The author declares no competing interest.
Data availability: Data generated or analyzed during this study are available from the author on request.

 Online Journal of Communication and Media Technologies, 2023

Online Journal of Communication and Media Technologies, 13(4), e202355 17 / 18

REFERENCES

Abdulhameed, O. A., Yousuf, A. Y., & Abbas, R. H. (2020). Aspect oriented programming: Concepts,
characteristics and implementation. Periodicals of Engineering and Natural Sciences, 7(4), 2022-2033.
https://doi.org/10.21533/pen.v7i4.975

Abid, M. K., & Khan, M. (2022). Complexity in the adaptation of aspect-oriented software development.
International Journal of Information Systems and Computer Technologies, 1(1), 13-20.
https://doi.org/10.58325/ijisct.001.01.0013

Aichernig, B. K., Bauerstätter, P., Jöbstl, E., Kann, S., Korošec, R., Krenn, W., Mateis, C., Schlick, R., & Schumi, R.
(2019). Learning and statistical model checking of system response times. Software Quality Journal, 27,
757-795. https://doi.org/10.1007/s11219-018-9432-8

AlSobeh, A. M., AlShattnawi, S., Jarrah, A., & Hammad, M. M. (2020). Weavesim: A scalable and reusable cloud
simulation framework leveraging aspect-oriented programming. Jordanian Journal of Computers and
Information Technology, 6(2), 1. https://doi.org/10.5455/jjcit.71-1579451674

AlSobeh, A. M., Hammad, R., & Al-Tamimi, A. K. (2019). A modular cloud-based ontology framework for
context-aware EHR services. International Journal of Computer Applications in Technology, 60(4), 339-350.
https://doi.org/10.1504/IJCAT.2019.101181

AlSobeh, A. M., Magableh, A. A. A. R., & AlSukhni, E. M. (2018). Runtime reusable weaving model for cloud
services using aspect-oriented programming: The security-related aspect. International Journal of Web
Services Research, 15(1), 71-88. https://doi.org/10.4018/IJWSR.2018010104

AlSobeh, A., & Clyde, S. (2014). Unified conceptual model for join points in distributed transactions. ICSE, 14,
8-15.

AlSobeh, A., & Shatnawi, A. (2023). Integrating data-driven security, model checking, and self-adaptation for
IoT systems using BIP components: A conceptual proposal model. In Proceedings of the International
Conference on Advances in Computing Research (pp. 533-549). Springer. https://doi.org/10.1007/978-3-
031-33743-7_44

André, É., Liu, S., Liu, Y., Choppy, C., Sun, J., & Dong, J. S. (2023). Formalizing UML state machines for automated
verification–A survey. ACM Computing Surveys, 55(13S), 277. https://doi.org/10.1145/3579821

Besser, D., Thomas, A., Farah, R., & Brass, T. (2019). Cross cutting concepts in an informal engineering setting
(fundamental). In Proceedings of the 2019 ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-
2--32570

Camilli, M. (2014). Formal verification problems in a big data world: Towards a mighty synergy. In Proceedings
of the 36th International Conference on Software Engineering (pp. 638-641).
https://doi.org/10.1145/2591062.2591088

Cerone, A. (2021). Ten years of DataMod: The synergy of data-driven and model-based approaches. In
Proceedings of the International Symposium: From Data to Models and Back (pp. 7-24). Springer.
https://doi.org/10.1007/978-3-031-16011-0_2

Cheers, H., & Lin, Y. (2021). Modelling dynamics in aspect-oriented programs. In Proceedings of the 12th IEEE
International Conference on Software Engineering and Service Science (pp. 6-11). IEEE.
https://doi.org/10.1109/ICSESS52187.2021.9522154

Ghareb, M. I., & Allen, G. (2018). State of the art metrics for aspect-oriented programming. AIP Conference
Proceedings, 1952(1), 020107. https://doi.org/10.1063/1.5032069

Grumberg, O., & Long, D. E. (1994). Model checking and modular verification. ACM Transactions on
Programming Languages and Systems, 16(3), 843-871. https://doi.org/10.1145/177492.177725

Gulia, P., Khari, M., & Patel, S. (2019). Metrics analysis in object oriented and aspect-oriented programming.
Recent Patents on Engineering, 13(2), 117-122. https://doi.org/10.2174/1872212112666180831115458

Hachani, O., & Bardou, D. (2002). Using aspect-oriented programming for design patterns implementation. In
Proceedings of the Workshop Reuse in Object-Oriented Information Systems Design (pp. 345-354).

Harel, D., Katz, G., Marron, A., Sadon, A., & Weiss, G. (2020). Executing scenario-based specification with
dynamic generation of rich events. In Proceedings of the 7th International Conference on Model-Driven
Engineering and Software Development (pp. 246-274). Springer. https://doi.org/10.1007/978-3-030-37873-
8_11

https://doi.org/10.21533/pen.v7i4.975
https://doi.org/10.58325/ijisct.001.01.0013
https://doi.org/10.1007/s11219-018-9432-8
https://doi.org/10.5455/jjcit.71-1579451674
https://doi.org/10.1504/IJCAT.2019.101181
https://doi.org/10.4018/IJWSR.2018010104
https://doi.org/10.1007/978-3-031-33743-7_44
https://doi.org/10.1007/978-3-031-33743-7_44
https://doi.org/10.1145/3579821
https://doi.org/10.18260/1-2--32570
https://doi.org/10.18260/1-2--32570
https://doi.org/10.1145/2591062.2591088
https://doi.org/10.1007/978-3-031-16011-0_2
https://doi.org/10.1109/ICSESS52187.2021.9522154
https://doi.org/10.1063/1.5032069
https://doi.org/10.1145/177492.177725
https://doi.org/10.2174/1872212112666180831115458
https://doi.org/10.1007/978-3-030-37873-8_11
https://doi.org/10.1007/978-3-030-37873-8_11

AlSobeh

18 / 18 Online Journal of Communication and Media Technologies, 13(4), e202355

Hung, C. C., Chen, K., & Liao, C. F. (2019). Modularizing cross-cutting concerns with aspect-oriented extensions
for solidity. In Proceedings of the IEEE International Conference on Decentralized Applications and
Infrastructures (pp. 176-181). IEEE. https://doi.org/10.1109/DAPPCON.2019.00033

Idate, S. R., Rao, T. S., & Mali, D. J. (2023). Context-based aspect-oriented requirement engineering model.
Engineering, Technology & Applied Science Research, 13(2), 10460-10465.
https://doi.org/10.48084/etasr.5699

Johnson, A. E. W., Bulgarelli, L., Shen, L., Gayles, A., Shammout, A., Horng, S., Pollard, T. J., Hao, S., Moody, B.,
Gow, B., Lehman, L.-W. H., Celi, L. A., & Mark, R. G. (2023). MIMIC-IV, a freely accessible electronic health
record dataset. Scientific Data, 10(1), 1. https://doi.org/10.1038/s41597-022-01899-x

Kallfelz, M., Tsvetkova, A., Pollard, T., Kwong, M., Lipori, G., Huser, V., Osborn, J., Hao, S., & Williams, A. (2021).
MIMIC-IV demo data in the OMOP common data model. PhysioNet. https://doi.org/10.13026/p1f5-7x35

Khalifa, F., & Chouraqui, S. (2020). Applying aspect oriented programming in distributed application
engineering. International Journal of Advanced Computer Science and Applications, 11(7), 226-232.
https://doi.org/10.14569/IJACSA.2020.0110729

Nordine, J. C., & Lee, O. (2023). On the nature and utility of crosscutting concepts. Education Sciences, 13(7),
640. https://doi.org/10.3390/educsci13070640

Nusayr, A. (2022). Extending the aspect oriented programming join point model for memory and type safety.
International Journal of Computer and Information Engineering, 16(9), 390-393.

Patel, S., Katiyar, S. K., & Sharma, N. (2023). Metric analysis for AOP and OOP programming paradigm. Journal
of the Institution of Engineers (India): Series B, 104(1), 215-220. https://doi.org/10.1007/s40031-022-00842-
3

Qader, S. M., Hassan, B. A., Ahmed, H. O., & Hamarashid, H. K. (2022). Aspect oriented programming: Trends
and Applications. UKH Journal of Science and Engineering, 6(1), 12-20.
https://doi.org/10.25079/ukhjse.v6n1y2022.pp12-20

Qu, C., Zhang, X., Chen, H., & Zhang, L. (2021). Aspect-oriented requirement analysis based on formal method.
Journal of Physics: Conference Series, 1952(4), 042027. https://doi.org/10.1088/1742-6596/1952/4/042027

Tashtoush, Y. M., Darweesh, D. A., Husari, G., Darwish, O. A., Darwish, Y., Issa, L. B., & Ashqar, H. I. (2021). Agile
approaches for cybersecurity systems, IoT and intelligent transportation. IEEE Access, 10, 1360-1375.
https://doi.org/10.1109/ACCESS.2021.3136861

Xu, D. X., El-Ariss, O., Xu, W. F., & Wang, L. Z. (2009). Aspect-oriented modeling and verification with finite state
machines. Journal of Computer Science and Technology, 24(5), 949-961. https://doi.org/10.1007/s11390-
009-9269-5

Xu, D., Alsmadi, I., & Xu, W. (2007). Model checking aspect-oriented design specification. In Proceedings of the
31st Annual International Computer Software and Applications Conference (pp. 491-500). IEEE.
https://doi.org/10.1109/COMPSAC.2007.152

Zhang, Q., Wang, S., & Li, J. (2023). A contrastive learning framework with tree-LSTMs for aspect-based
sentiment analysis. Neural Processing Letters. https://doi.org/10.1007/s11063-023-11181-9

Zhu, W. (2021). Big data on linear temporal logic formulas. In Proceedings of the 2021 IEEE 4th Advanced
Information Management, Communicates, Electronic and Automation Control Conference (pp. 544-547). IEEE.
https://doi.org/10.1109/IMCEC51613.2021.9482368

https://doi.org/10.1109/DAPPCON.2019.00033
https://doi.org/10.48084/etasr.5699
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.13026/p1f5-7x35
https://doi.org/10.14569/IJACSA.2020.0110729
https://doi.org/10.3390/educsci13070640
https://doi.org/10.1007/s40031-022-00842-3
https://doi.org/10.1007/s40031-022-00842-3
https://doi.org/10.25079/ukhjse.v6n1y2022.pp12-20
https://doi.org/10.1088/1742-6596/1952/4/042027
https://doi.org/10.1109/ACCESS.2021.3136861
https://doi.org/10.1007/s11390-009-9269-5
https://doi.org/10.1007/s11390-009-9269-5
https://doi.org/10.1109/COMPSAC.2007.152
https://doi.org/10.1007/s11063-023-11181-9
https://doi.org/10.1109/IMCEC51613.2021.9482368

	INTRODUCTION
	LITERATURE REVIEW
	Aspect-Oriented Programming & Model Checking Software Applications
	Model Checking of Data Systems
	Abstraction and Modular Verification
	Modular Verification

	OBSERVE-BASED STATISTICAL MODEL-CHECKING ARCHITECTURE
	OSM Process: Enhancing EHR Systems Including COVID-19 Requirements

	OSM’S COMPONENTS & IMPLEMENTATION0F
	EVALUATION & DISCUSSION
	CONCLUSIONS
	Future Works & Limitations

	REFERENCES

